
IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, MARCH 2023 1

NAWQ-SR: A Hybrid-Precision NPU Engine for
Efficient On-Device Super-Resolution

Stylianos I. Venieris, Mario Almeida, Royson Lee, and Nicholas D. Lane

Abstract—In recent years, image and video delivery systems have begun integrating deep learning super-resolution (SR) approaches,
leveraging their unprecedented visual enhancement capabilities while reducing reliance on networking conditions. Nevertheless,
deploying these solutions on mobile devices still remains an active challenge as SR models are excessively demanding with respect to
workload and memory footprint. Despite recent progress on on-device SR frameworks, existing systems either penalize visual quality,
lead to excessive energy consumption or make inefficient use of the available resources. This work presents NAWQ-SR, a novel
framework for the efficient on-device execution of SR models. Through a novel hybrid-precision quantization technique and a runtime
neural image codec, NAWQ-SR exploits the multi-precision capabilities of modern mobile NPUs in order to minimize latency, while
meeting user-specified quality constraints. Moreover, NAWQ-SR selectively adapts the arithmetic precision at run time to equip the SR
DNN’s layers with wider representational power, improving visual quality beyond what was previously possible on NPUs. Altogether,
NAWQ-SR achieves an average speedup of 7.9×, 3× and 1.91× over the state-of-the-art on-device SR systems that use heterogeneous
processors (MobiSR), CPU (SplitSR) and NPU (XLSR), respectively. Furthermore, NAWQ-SR delivers an average of 3.2× speedup and
0.39 dB higher PSNR over status-quo INT8 NPU designs, but most importantly mitigates the negative effects of quantization on visual
quality, setting a new state-of-the-art in the attainable quality of NPU-based SR.

Index Terms—Deep neural networks, mobile computing, super-resolution

✦

1 INTRODUCTION

With the rapid rise of Internet content delivery services
and devices that support higher resolution content, images
and videos are predicted to account for 82% of the global
Web traffic [1]. Mobile applications, in particular, constitute
a great proportion of this growth, as services such as live
streaming, video-conferencing, and video-on-demand have
been on the rise. For instance, popular video app TikTok has
over 50 million daily users with increases of 55% in unique
users and 93.7% in the average time spent per user in just
six months [2]. To meet such demands, mobile systems are
required to maximize both the user satisfaction and their
quality of experience (QoE).

A primary challenge of this class of mobile systems is their
sensitivity to networking conditions. In real-world cellular
networks, the network speed fluctuates substantially, and
poor connectivity leads to excessive response times, dropped
frames or video stalling, which rapidly degrade the QoE [3],
[4], [5], [6]. This phenomenon is further aggravated by the
increasing number of users which compete for the same pool
of network resources and create contention [7].

A recent key method to handle the aforementioned draw-
backs is neural enhancement via super-resolution (SR) deep
neural networks (DNNs) [8]. SR DNNs operate by processing
a low-resolution, degraded image to automatically generate
a high-quality, high-resolution output. This allows compact,
low-quality content to be transmitted across the network,

• Stylianos I. Venieris is with the Samsung AI Center, CB1 2JH Cambridge,
U.K.

• Mario Almedia is with Rain Instant Pay.
• Royson Lee and Nicholas D. Lane are with the University of Cambridge,

CB2 1TN Cambridge, U.K. and also with the Samsung AI Center, CB1
2JH Cambridge, U.K.

Preprint: Under review.

at the expense of additional computation at the receiver’s
end. As such, neural enhancement removes the system’s sole
reliance on the network and opens up a new dimension in
the design space by introducing a trade-off between the use
of bandwidth and computational resources [9], [10].

Despite the increasing processing capabilities of mobile
devices, on-device execution of SR models still remains an
active challenge due to their demanding workload. In par-
ticular, the number of multiply-add operations and memory
capacity required even by mobile-tailored SR DNNs is orders
of magnitude larger than the more common classification
DNNs [11]. To counteract the excessive computational needs,
existing systems 1) rely on powerful platforms, such as
assuming the availability of a desktop GPU client [12], [13],
2) require the parallel use of all available processors (CPU,
GPU, NPU) [11], 3) leverage frame dependencies in order
to cache previously enhanced results [14] or 4) resort to
cloud offloading [15]. As such, existing solutions are either
restricted to high-end deployment settings [12], [13], thus not
accommodating mobile devices, or incur additional issues as
a by-product, such as thermal throttling [11], [16], [17] and a
drastic drop in visual quality [14], [15].

To counteract these limitations and enable the use of
SR DNNs on mobile devices, there has been an increased
focus towards low-precision DNN execution on faster and
more efficient processing units like NPUs [11], [18]. These
units provide higher energy efficiency than CPUs and GPUs
by omitting general-purpose hardware logic, increasing at
the same time the availability of computational resources
for other tasks by taking over the compute-intensive DNN
execution. Despite the NPUs’ demonstrated benefits for
classification DNNs, executing SR models at lower precision
often comes at the cost of degraded visual quality; as shown

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, MARCH 2023 2

in Fig. 1, upscaling with INT8 - which is conventionally thought
to be the best data type for inference - would result in unnatural
visual artifacts on both the texture and color in some images,
especially for deeper DNNs. Notably, these anomalies could
also happen despite marginal quantitative loss in standard
metrics (0.1 dB drop in PSNR) as minor differences at
the pixel level can still result in considerable high-level
deformation. As a result, existing on-device SR frameworks
such as MobiSR [11] and NEMO [14] underutilize or entirely
avoid execution on the NPU to meet an acceptable visual
quality. Thus, there is an emerging need for novel solutions
that allow leveraging mobile NPUs for SR without the quality
impact of low-precision data types.

In this work, we present NAWQ-SR, a framework that
overcomes the limitations of existing on-device SR systems
and delivers fast, efficient and high-quality SR on mobile.
NAWQ-SR introduces an NPU-centric approach, comprising
a novel hybrid-precision execution paradigm and a runtime
neural image codec that exploit the multi-precision processing
capabilities of modern mobile NPUs to minimize latency
while meeting the user-specified quality targets. Moreover,
to push visual quality beyond the state-of-the-art NPU-
based designs, we propose a mechanism that selectively
re-customizes the arithmetic precision of the DNN layers
on-the-fly. This paper makes the following key contributions:

• A novel hybrid-precision execution scheme together with
a methodology for optimizing the deployment of SR
DNNs to the latency and quality requirements of the
target application. By considering the multiple precisions
supported by a given NPU, our framework adapts each
layer’s wordlength through a single-shot optimization
algorithm that co-optimizes the per-layer quantization of
the DNN and the scheduling of its layers on the NPU.

• A novel technique that selectively applies adaptive arith-
metic precision on quantization-sensitive layers, enhancing
them with wider representational power at run time. We
dynamically adapt the quantization parameters of the
selected layers in a per-sample input-dependent manner,
leading to lower quantization error and higher visual
quality than previously attainable on mobile NPUs.

• A new neural image codec comprising a hybrid-precision
dispatcher and a runtime quantization unit. Through
our low-overhead codec, we provide a fully NPU-based
execution of SR DNNs that avoids barriers of current NPU
support for upsampling layers, acknowledged by previous
works, that conventionally required CPU or GPU fallback.

• To the best of our knowledge, this work is the first SR
approach to exploit the multi-precision capabilities of
the heterogeneous processing units that reside in NPUs.
Hence, it can be orthogonally combined with existing on-
device SR systems such as MobiSR [11] to counteract their
performance limitations on the NPU. As a standalone
framework, it delivers a speedup of 1.6×-9.8× over state-
of-the-art on-device SR systems and 91% over XLSR, the
winner of the Mobile AI 2021 challenge on real-time
quantized SR.

2 BACKGROUND & RELATED WORK

In this section, we discuss the emerging use of super-
resolution for efficient visual enhancement on mobile devices,

LR (img045.png) IMDN w/ INT8 IMDN w/ NAWQ-SR

LR (img043.png) MobiSR-RCAN w/ INT8 MobiSR-RCAN w/ NAWQ-SR

LR (img023.png) MobiSR-RCAN w/ INT8 MobiSR-RCAN w/ NAWQ-SR

LR (img093.png) MobiSR-RCAN w/ INT8 MobiSR-RCAN w/ NAWQ-SR

Fig. 1: Qualitative comparison between INT8 and NAWQ-SR
×4 upscaling on the Urban100 [19] dataset. INT8 results in
visual artifacts on both textures and colors when compared
to NAWQ-SR’s hybrid-precision and DRE-based quality
enhancement.

model- and system-level optimizations for the on-device
execution of SR models and the main characteristics of the
latest mobile NPUs.

2.1 Super-resolution for Mobile Devices

The unprecedented performance of SR DNNs in restoring
realistic textures, together with their orthogonal integration
with image/video compression and adaptive bitrate schemes,
has made them a key component behind a broad range of
products, from high-resolution TVs [20] to gaming GPUs [21].
As such, several works have focused on improving the qual-
ity of mapping low-resolution (LR) images to high resolution
(HR) [22], [23], [24]. Despite the significant progress [25], [26],
SR DNNs still have prohibitively high computational and
memory demands for most real-world mobile deployments.

Efficient Super-resolution. Recent works have proposed
efficiency-optimized model architectures. Prominent tech-
niques span from avoiding the computation of large feature
maps [8] and mitigating the cost of upsampling through
the use of pixel-shuffle layers [27], [28], to employing more
efficient blocks, such as group convolutions [29] and channel
splitting [23], [30]. Neural architecture search for efficient SR
is also gaining traction [31], [32], [33]. Nonetheless, the on-

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, MARCH 2023 3

device execution of these models is still impractical, resulting
in numerous system-based solutions [10].

On-device Super-resolution. To deploy SR models on
mobile, the state-of-the-art on-device SR frameworks have
adopted various approaches. One line of work [11], [15]
has focused on utilizing the heterogeneous processors (CPU,
GPU, NPU) residing in many recent devices. To effectively
load-balance across processors, these systems exploit the ob-
servation that patches of an image have varying upsampling
difficulty. For instance, MobiSR [11] adopts a criterion to
quantify the difficulty of each patch and dispatch it to the
appropriate processor. Besides scheduling, the video-focused
NEMO [14] leverages the inter-frame dependencies in order
to cache and reuse previously super-resolved patches. Finally,
SplitSR [34] combined efficient model design with compiler
optimizations to improve CPU-based SR and XLSR [18]
presented a hand-crafted lightweight model.

Even though these frameworks enable fast on-device
upsampling, they come at the high cost of quality degradation.
Notably, mapping these models on compute engines that run
on lower bitwidths, such as NPUs, causes a considerable drop
in visual quality as observed in recent mobile SR systems [11],
[14], [18]. As a result, existing systems either reduce the
number of patches dispatched to NPUs [11] or entirely
avoid using them [14], [34], leading to reduced efficiency
compared to NPU-only execution. As little work has been
done to mitigate the effects of quantization on SR models,
our work aims to breach this gap to allow existing techniques
to leverage the full capabilities of modern NPUs that can be
found across smartphones [35], [36], [37], [38].

Quantization. Precision quantization constitutes a promi-
nent method for minimizing the computational and memory
demands of DNNs. State-of-the-art approaches typically
adopt block floating-point schemes (also known as dynamic
fixed-point), using a uniform wordlength1 across layers. The
majority of existing works apply either 1) quantization to al-
ready trained full-precision models, followed by a retraining
step to fine-tune the weights [39], [40], or 2) quantization-
aware training to directly obtain low-precision models [41],
[42]. As such, a commonality of both approaches is that they
require an expensive training step.

A third approach that allows for nonuniform per-layer
wordlength are mixed-precision schemes, such as HAQ [43]
and HAWQ [44]. However, both HAQ and HAWQ impose
an excessive computational overhead by relying on reinforce-
ment learning and a multi-stage retraining process, respec-
tively. More importantly, both are tailored for classification
DNNs.

Although the aforementioned quantization approaches
have been successfully applied on classification DNNs with
minimal accuracy loss, they do not generalize to SR models,
as they often lead to a catastrophic drop in visual quality [11],
[14], [45], as shown in Fig. 1. This is primarily due to the
removal of Batch Normalization (BN) layers from recent SR
models [22], [30], [31] as they were shown to severely restrict
their representational power [46]. In turn, the absence of
BN leads to significant variability in the dynamic range
of activations, making the direct utilization of existing

1. We use the terms wordlength and bitwidth interchangeably.

quantization methods futile [41] or requiring expensive
architectural modifications and retraining [45], [47], [48].

With the integration of low-precision NPUs in smart-
phones, there is an emerging need for novel quantization
methods that are particularly crafted for on-device SR
in order to combine high quality with efficiency. In this
context, our NAWQ-SR framework introduces novel post-
training techniques that closely approach the quality of full-
precision models, leaving little room for improvement through
expensive retraining. In addition, NAWQ-SR can be applied
complementarily on models trained in a quantization-aware
manner.

2.2 Challenges and Opportunities of NPUs
Designed explicitly for DNN workloads, mobile NPUs typi-
cally rely on low-precision processing units, employing 16-
or 8-bit fixed-point arithmetic [35], [37]. Despite the potential
processing benefits and although such narrow precision has
been used effectively for classification DNNs [41], quantized
SR models suffer excessive quality drops compared to
their full-precision versions (Fig. 1), making NPU execution
prohibitive.

Nonetheless, recent hardware advances have led to NPUs
that support multiple arithmetic precisions. Such examples are
Hexagon 698 on Qualcomm Snapdragon 865 (SDM865) [38],
Arm Ethos [49] and MediaTek AI processing unit (APU) [50],
all supporting two precision modes: 8-bit activations and
weights (INT8) or 16-bit activations and 8-bit weights
(A16W8). In spite of the new opportunities of these hardware
architectures, existing deployment methods fail to exploit
them, leading to 1) fast but low-quality execution in INT8
- due to the quantization-induced error, 2) higher quality
but slow execution in A16W8 - close to 2× slower than
INT8, as shown in §5.3), or 3) slow and low-quality execution
in A16W8 for models where even 16 bits do not suffice -
which is often the case for SR models. Our work pushes
the boundaries of what is possible in terms of mapping SR
models to NPUs, yielding fast and high-quality designs that
fully utilize their multi-precision capabilities.

3 NAWQ-SR OVERVIEW

Towards addressing the shortcomings of existing mobile SR
systems, we propose NAWQ-SR, an NPU-centric framework
that maximizes the efficiency of on-device SR. NAWQ-
SR leverages the fact that different parts of SR neural
architectures have nonuniform precision needs, in order
to partition the execution across the NPU’s heterogeneous
units. With SR models deployed across a broad range of
use-cases, NAWQ-SR is in a unique position to enhance
the performance of a wide range of visual-content mobile
applications.

Offline Flow. Fig. 2 shows NAWQ-SR’s offline flow. The
framework is supplied with a trained SR DNN and a quality
drop tolerance using an image distortion metric. As a first
step, the Weights Quantizer analyses the dynamic ranges of
the model’s weights in each layer and accordingly reduces
their precision to 8 bits, using suitable scale factors. Next,
the Multi-Wordlength Quantizer (§4.1) considers the NPU-
supported bitwidths and determines the wordlength for the
activations of each layer, allowing for different bitwidths

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, MARCH 2023 4

Calibration Set

Training Set

SR DNN
Description

Trainer
Trained

DNN

Weights
Quantizer

User Input:
maxQualityDrop

Optimized
NPU Mapping

Hybrid-prec
DNN

Multi-Wordlength Quantization

Dynamic Range Adaptation

Ranking
of layers

DRE Layer
Selection

Layerwise
Resilience Analysis

QuantSR-WLopt

Fig. 2: Overview of NAWQ-SR’s offline flow.

across layers. The output of this stage is a quantized hybrid-
precision DNN. At this stage, the user-supplied calibration
set is used to find the least computationally costly hybrid-
precision DNN that meets the user’s quality constraint.

As a next step, the weights-quantized DNN is passed to
the Dynamic Range Adaptation module (§4.2). This module
is responsible for deciding which layers will not use the
quantization scale factors that the Multi-Wordlength Quantizer
selected. Instead, these layers derive their scale factors at
run time by examining the dynamic range of the input
activations tensor and quantizing them on-the-fly. We refer
to this technique as run-time dynamic range estimation (DRE)
and determine the DRE layers using the DRE Layer Selection
module based on a Layerwise Resilience Analysis, which
assesses the resilience of each layer to low precision. Overall,
given the user-defined quality drop tolerance, NAWQ-SR
generates a DRE-augmented hybrid-precision model together
with an execution schedule, tailored for the NPU of the target
mobile device and content.

Runtime Architecture. Fig. 3 depicts the architecture
of NAWQ-SR upon deployment. The process is triggered
when LR images arrive at the Input Image Buffer. These are
passed in a per-image manner to the Neural Image Codec
(§4.3), which is responsible for their upscaling. The Dispatcher,
already hosting the NAWQ-SR’s hybrid-precision model and
its associated execution schedule, schedules the processing
of the input images on the NPU. As such, each layer is
executed either on the INT8 or the A16W8 unit. If DRE is
selected, the layer’s input activations tensor is redirected to
the Runtime Quantization Unit (RQU), which in turn quantizes
it based on its actual dynamic range and then feeds it to the
appropriate unit. Finally, the processed images are passed to
the Playback/Image Buffer.

4 DESIGN OF NAWQ-SR
In this section, we detail how NAWQ-SR leverages the het-
erogeneous processing units of mobile NPUs through hybrid-
precision execution and formally define the optimization
problem that jointly decides the quantization and mapping
of DNN layers to the NPU resources. Moreover, we describe
the runtime components of NAWQ-SR and the associated
optimizations that ensure efficient and high-performance
integration into commodity mobile devices.

4.1 Multiple Wordlengths for Mobile SR
Traditional mobile implementations of DNNs commonly
employ a single uniform wordlength across all computations,
with either floating-point arithmetic on CPUs and GPUs or
fixed-point on DSPs and NPUs. This is a result of targeting

Mobile SoC

Neural Image Codec

INT8 Unit A16W8 Unit
Video Player

or App

Playback/Image
Buffer

Data
Control

Main Memory

DRE

layer 𝑙 precision

INT8 A16W8

N
P

U

RQUDispatcher

LR image SR image

Input Image
Buffer

Fig. 3: NAWQ-SR’s runtime architecture.

pre-designed processing units, such as a CPU’s FP32 or a
DSP’s INT8 units. Nevertheless, the latest NPUs can help us
overcome this restriction for two reasons. At the hardware
level, modern NPUs either host heterogeneous processing
units that support different arithmetic precision, e.g. the 8-
bit HVX and A16W8 HTA units on the Hexagon 698 NPU,
or provide precision-configurable units, e.g. Samsung S21’s
NPU [51]. This property allows the optimization of the
DNN execution so that different operations are performed
using different precision. At the algorithmic level, we can
design methodologies that allow the customization of each
operation’s precision, shaping the per-operation wordlength
to the requirements of the DNN algorithm.

Together, these optimization opportunities point to an
alternative design paradigm, which we name hybrid-precision.
This implementation style introduces a multiple-wordlength
approach and inherits the speed and energy advantages of
fixed-point arithmetic. However, by allowing each operation
in the DNN to be encoded with a different wordlength, the
design degrees of freedom are significantly increased.

To comply with the widely adopted practice of applying
8-bit quantization on the weights of a model and with the
NPU trend of supporting only 8-bit weights [38], [49], we
quantize the weights using 8 bits across all layers (line 1
in Alg. 1 and Weights Quantizer in Fig. 2), and tailor our
hybrid-precision method to the activations. We first define
the granularity at which different wordlengths can be applied.
In NAWQ-SR, we opt for a layerwise parametrization. This
approach ensures the efficient utilization of the underlying
hardware: the quantization step prior to execution has to be
amortized across several computations, which is achieved by
the compute-intensive convolution or matrix operations of a
DNN layer. Finer granularity, such as allowing for different
wordlength per channel, would incur significant overhead
due to the low computation-to-quantization ratio.

Hybrid-Precision Quantization Strategy. To implement
multi-wordlength DNNs, a hybrid-precision quantization
strategy needs to be defined. The proposed strategy utilizes
different wordlength bl, scale factor sl and zero point zl
for each layer l, such that a value x is quantized to a b-bit
integer xquant as xquant = ⌊x · sl − zl⌉. To introduce different
wordlengths among layers, quantization is performed such
that all values within each activations tensor at the input of
each layer have a single wordlength, scale factor and zero
point. As such, the quantization configuration, ql, for the l-th
layer is given by ql = ⟨bl, sl, zl⟩ ∀l ∈ L, where L is the set of
layers in the given DNN. Furthermore, the scale factor sl and
zero point zl are derived based on the estimated dynamic
range of the activations tensor x as

sl =
(2bl − 1)

x̂max − x̂min
, zl = ⌊sl · x̂min⌉ (1)

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, MARCH 2023 5

where x̂{max,min} are estimates of the max/min values in x,
derived by processing a dataset that is representative of the
target task. We refer to this set as the calibration set.

Hybrid-Precision Wordlength Optimization. Given a
DNN m with |L| layers, we define a wordlength bl for each
layer l, referred to collectively as the vector b. We further
denote by m(b) a model quantized with hybrid precision
across its layers as dictated by b. Let ϵ be the user-specified
maximum allowable drop on average quality, which can be
quantified using the peak signal-to-noise ratio (PSNR) image
reconstruction metric, denoted by E(Q(m(b))). Given a cost
estimator T (m(b)) (e.g. latency estimate or FLOPs), we pose
the following constrained optimization problem

min
b

T (m(b)) subject to (2)

∀l ∈ L : bl ∈ W and E
(
Q
(
m(b)

))
− E

(
Q
(
m(u)

))
≤ ϵ

where W is the candidate wordlength set and u is the uniform
wordlength vector that assigns 32 bits to all layers. The
scale factor sl and zero point zl are analytically derived as
per Eq. (1) and hence are implicitly co-optimized with the
selection of bl. Thus, we omit them from Eq. (2).

The optimization considers the supported bitwidths of
the underlying NPU (e.g. W = {8, 16} for SDM865) and
aims to find the wordlengths and scale factors of all layers
that minimize the execution cost of an SR DNN on the
NPU, subject to the given quality constraints. To capture
the execution cost on the specialized hardware of NPUs, we
adopt a variation of the number of bit operations (BOPs)
metric as our cost estimator T [42], [52]. Our metric weights
each operation with a cost based on the number of bytes
used. Specifically, operations performed in 32, 16, and 8
bits are assigned a cost of 4, 2 and 1, respectively, reflecting
the runtime and memory differences among the different
bitwidths. Hence, given a model m and a wordlength vector
b, GetBOPs(m(b)) returns the total cost of executing m by
considering each layer’s number of operations and assigned
wordlength (bl).

The per-layer wordlength selection can be cast as a
search problem aiming to achieve peak processing speed
by selecting suitable bitwidths. For an SR DNN with |L|
layers and |W| candidate bitwidths, the total number of
candidate hybrid-precision configurations is |W||L|. With
an increase in either the depth of a DNN or the number
of available bitwidths, an exhaustive enumeration rapidly
becomes intractable. In real-world deployments, although
NPUs currently support up to two bitwidths, e.g. 8 or
16 bits, state-of-the-art SR DNNs reach significant depths,
ranging from 33 layers for the lightweight TPSR model [31]
and hence 8 billion design points, up to more than 1500
layers for RCAN [53] and 21500 design points. As a result,
the combinatorial scaling of the design space size and the
large depth of SR DNNs prohibit optimization by means of
enumeration.

QuantSR-WLopt. In this context, we propose QuantSR-
WLopt, a heuristic method to obtain a solution in the non-
convex design space. The key principle behind QuantSR-
WLopt is a cost-prioritizing strategy that applies more
aggressive quantization to the most FLOPs-heavy layers
first, through an efficient single-shot wordlength adaptation,
i.e. by modifying the wordlength of each layer only once.

With reference to Algorithm 1 and with a running
example of W = {8, 16}, QuantSR-WLopt first quantizes

Algorithm 1: Wordlength Optimization (QuantSR-WLopt)

Input: DNN m with layers L, Wordlengths set W = {8, 16}
Calibration set Dcalib
Reference quality qref (PSNR in dB or SSIM in [−1, 1])
Quality drop tolerance ϵ

Output: Optimized wordlength vector bsel ∈W|L|

1 m←WeightsQuantizer(m, 8) ▷ Quantize weights to 8 bits
2 u← uniform wordlength (in our case 16 bits)
3 bsel ← u
4 InitScales&ZeroPoints(m(b), Dcalib)
5 c

bops
total , c

bops
layers ← GetBOPs(m(b)) ▷ Initial cost

6 csorted
layers ,L

sorted
bops ← SortDescending(cbops

layers)

7 foreach l in Lsorted
bops do ▷ Single-shot pass through the layers

8 b← bsel

9 bl ← 8
10 UpdateScale&ZeroPoint(bl) ▷ Using Eq. (1)
11 q ← GetQuality(m(b),Dcalib)

12 cbops ← GetBOPs(m(b))
13 if qref − q ≤ ϵ then ▷ Quality constraint
14 bsel

l ← 8, qbest ← q, c
bops
min ← cbops

15 end
16 end

all layers with the same uniform high precision (e.g. 16 bits)
(lines 1-3) and sorts them with respect to the amount of BOPs
(lines 4-5). Next, the algorithm iterates once along the depth
of the DNN and sets the wordlength of the l-th layer to 8 bits
(line 8). By passing through the calibration set, the achieved
quality q is calculated (line 10), together with the new cost
(line 11). If the current quality satisfies the constraint, layer l
is kept to 8 bits; else it is reverted back to 16 bits to recover
the lost quality (lines 12-14).

QuantSR-WLopt exhibits a number of crucial properties.
With respect to complexity, it scales linearly with the number
of layers |L| as each layer is examined only once. With
respect to execution cost, QuantSR-WLopt’s cost-aware
criterion ensures that a less costly layer is never quantized to
lower precision at the expense of a heavier layer. Hence,
it prioritizes the quantization of layers that will have a
larger impact on minimizing the runtime. With respect to
quality, the algorithm guarantees by design the return of a
configuration that meets the quality constraint, if and only if
such a design exists in the design space. As such, the upper
bound in quality is given by m(bmax) where bmax

l = max(W)
for all l ∈ L. Thus, to address cases where the upper bound
in quality is not satisfactory, we introduce a new design
dimension in the quantization scheme by deciding whether
to fix or dynamically determine the scale factor and zero
point of each layer. We discuss this in the following section.

4.2 Dynamic Range Adaptation
As described in Section 4.1, the A16W8 mode constitutes our
scheme’s upper bound in attainable visual quality. However,
there are cases where A16W8 fails to satisfy the constraint of
Eq. (2). As such, current NPU mappings often fail to reach
acceptable quality, especially when targeting efficient SR
models. This has led to existing works either partially using
the NPU [11] or avoiding it altogether [14], [34].

To push the quality of NPU-based SR beyond what
was previously attainable, while sustaining the processing
benefits of hybrid-precision execution, NAWQ-SR introduces
a new design dimension to the quantization strategy, which
we name dynamic range estimation (DRE). DRE adapts the
scale factor and zero point of an activations tensor at run time,
based on the actual range of its values for the particular input
sample. This technique overcomes the limitations of existing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, MARCH 2023 6

Algorithm 2: Layerwise Resilience Analysis (LRA)

Input: DNN m with layers L, Wordlengths set W = {8, 16}
Quality drop q

drop
w-quant of 8-bit weights-quantized DNN

Reference quality qref (PSNR in dB or SSIM in [−1, 1])
Output: Sorted layers with respect to quality drop Lsorted

drop

Sorted layerwise quality drops q
drop
sorted

1 qref ← qref − q
drop
w-quant ▷ Remove quality drop due to 8-bit weights

2 u← uniform wordlength (in our case 16 bits)
3 foreach l in L do ▷ for each layer
4 b← u
5 bl ← 8 ▷ Set bitwidth for the l-th layer’s activations to 8 bits
6 q ← GetQuality(m(b))

7 q
drop
l ← qref − q

8 end
9 q

drop
sorted,L

sorted
drop ← SortDescending(qdrop)

works, where the values of sl and zl are statically derived
prior to deployment and remain fixed at run time. The
primary limitation that leads to degraded output quality is
manifested in cases where the estimated dynamic range does
not capture the actual encountered range of an input. In these
cases, the statically determined precision underutilizes the
representation range of the selected wordlength, leading to
excessive numerical error and, in turn, quality drop. Instead,
DRE adapts the scale factor and zero point in an input-
dependent manner, occupying the full range of values for
the activations of the current input.

With this scheme, we formulate the new quantization
method for each layer as ql = ⟨bl, sl, zl, dl⟩ ∀l ∈ L, where
dl ∈ {0, 1} indicates whether DRE is applied on layer l.
When dl is 1 and DRE is enabled, the actual dynamic range
of the input activations tensor x is first calculated and the
scale factor sl and zero point zl are derived on-the-fly as per
Eq. (1), by substituting the statically determined estimates at
the denominator with the actual values, xmax and xmin.

The advantages of DRE come at a cost: the computational
overhead of finding the actual range (i.e. min/max values)
of the activations tensor and computing the new scale factor
and zero point has to be taken into account. In other words,
applying DRE across all layers in a brute-force manner can
lead to excessive latency and thus negate its benefits. Hence,
to effectively utilize DRE, we have to devise a method of:
i) quantifying the resilience of each layer to low precision,
and ii) an algorithm that leverages this information to
selectively apply DRE to a subset of the DNN’s layers.

Layerwise Resilience Analysis. Algorithm 2 presents our
technique for estimating each layer’s resilience to reduced
precision. The core idea behind LRA is to isolate each layer’s
contribution to the quality drop of a quantized model. As the
weights are already 8 bits (§4.1), we first subtract the PSNR
drop caused solely by the weights quantization (line 1). In
this manner, any subsequently observed PSNR degradation
is due to the activations quantization. The algorithm starts
by using a uniform higher-precision representation for the
activations of all layers (line 2). Next, we iterate through
the layers, quantizing each one individually to 8 bits and
obtaining the associated drop with respect to that of the
weight-quantized model (line 7). Finally, the layers are sorted
in a decreasing order of quality drop (line 8).

DRE Layer Selection. After selecting the highest per-
forming bitwidths via QuantSR-WLopt and estimating the
layerwise resilience to quantization through LRA, NAWQ-
SR picks a subset of layers, to have their scale factors and
zero points computed at run time based on their actual

Algorithm 3: DRE Layer Selection

Input: Hybrid-precision DNN mq with layers L

Sorted layers with respect to quality drop Lsorted
drop

Sorted layerwise quality drops q
drop
sorted

Energy concentration threshold K ∈ [0, 1]
Output: DRE-augmented quantized model mDRE

q

1 for l← 0 to |L| − 1 do ▷ loop through sorted layers

2 El ←
l∑

i=0

|qdrop
sorted,l|

2 ▷ Energy concentration up to layer l

3 end
4 for l← 0 to |L| − 1 do ▷ loop through sorted layers
5 if El / E|L|−1 ≤ K then ▷ Energy constraint
6 LDRE ← Append

(
Lsorted

drop (l)
)

7 end
8 end
9 mDRE

q ← AddDRE(m,LDRE) ▷ Use DRE on the selected layers

dynamic range. Algorithm 3 describes this layer selection
process. The objective of the algorithm is to recover the
visual quality for the layers which exhibit large quality
degradation when quantized. Our key insight is to interpret
the layerwise PSNR drop as a discrete signal and adopt the
respective signal energy [54] (line 2) as a criterion to tune the
amount of layers that will utilize DRE. Given the DNN layers
ordered by quality drop, the DRE layer selection algorithm
first calculates the energy concentration up to each of these
layers (lines 1-3). For instance, the energy concentration of
a layer l includes the energy concentration of the previous
ordered layers (0 to l-1). Next, the algorithm selects for DRE
all the layers until the first one that meets the requested
energy concentration threshold K (lines 4-7). Threshold K
is represented as a fraction of the total energy concentration
(K ∈ [0, 1]) and allows for enhancing quality at the expense
of the extra DRE-induced latency (quantified in §5.2). A key
property of our method is that the number and selection of
layers that use DRE do not require tuning; instead, they are
adapted automatically based on K and can be nonuniform
across different SR DNNs for the same value of K .

4.3 Neural Image Codec

The Neural Image Codec is responsible for dividing the LR
images into fixed-size patches and upscaling them using the
target SR DNN through an optimized NPU mapping.

Dispatcher. To guide the on-device execution, the Neural
Image Codec introduces a dispatcher that, given the per-
layer quantization configuration ql, schedules execution to
the appropriate hardware processor of the NPU, using the
specified bitwidth, scale factor and zero point. To ensure
efficient execution, this process is performed in a number of
steps. First, the dispatcher adopts a partitioning strategy to re-
duce the communication between the codec components and
the target processors. Specifically, the dispatcher partitions
the DNN into groups of consecutive layers based on their
target bitwidth (e.g. INT8 or A16W8) and range estimation
technique (dl), scheduling execution on a per-partition basis.
As such, the scheduling of consecutive layers that need to
interact with the same components is coalesced, amortizing
the cost of communication between components.

Second, the dispatcher considers the requested range
estimation technique (dl). Partitions without DRE can be
executed without additional supervision using the supplied
scale factors and zero points. The remaining partitions are
monitored by the RQU to adjust the per-layer scaling factors
and zero points at run time, as detailed in the next section.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, MARCH 2023 7

Finally, the dispatcher coordinates with the NPU executor
to perform inference on a target processor (e.g. either HVX
or HTA in SDM865’s NPU) that supports the requested
partition’s bitwidth. We note that while the DNN partitions
are represented with distinct bitwidths, their weights are
always in 8 bits and, hence, only activations are quantized
on-the-fly. As such, NAWQ-SR shares the weights between
the activation wordlength representations by storing a single
8-bit copy in memory and thus incurs no extra memory cost
for supporting both INT8 and A16W8.

Many commercial NPUs already provide either dedicated
processors or extra cores for orchestrating execution where
NAWQ-SR’s dispatcher can be integrated. Such instances
are the Q6 processor in QC’s AI processor [38], or the NPU
controller (NPUC) in the latest Samsung Exynos chipsets [51],
[55]. By executing on a separate processor, NAWQ-SR’s
dispatcher and the partitioned inference can be performed
in parallel in a pipelined fashion, thus sustaining high
utilization of the NPU resources, while requiring no access
to the resources of the main CPU and improving the overall
efficiency.

Runtime Quantization Unit. For the partitions that
require DRE, the RQU is responsible for estimating the
per-layer dynamic range and adapting the respective scale
factors and zero points at run time. To derive the new
scale and zero point values (as detailed in §4.2), the RQU
captures each layer’s input tensors and extracts their range
of values (i.e. xmin and xmax). Then, the unit proceeds
with the computation of the new scale factor and zero
point as dictated by Eq. (1). The layer’s inputs are then
quantized using the new computed parameters and fed to
the appropriate processing unit for the actual layer execution.

To be deployable without starving the resources of the
target mobile device, the RQU has to exhibit low resource
usage when invoked. To this end, we first vectorize the
max/min operations by dividing the input activations tensor
across parallel max/min search tasks and then apply a
parallel-reduce operation to obtain the final range. Moreover,
the RQU execution is placed on the same processing unit
as the layers’ partition at hand, to avoid unnecessary data
transfers. Overall, the use of DRE results in improved quality
with minimal overhead as shown in Section 5.2.

Memory-Aware Mapping of Upsampling. Modern state-
of-the-art SR DNNs employ pixel-shuffle [27] for upsampling
to the desired resolution. However, due to the limited cache
of NPUs [56], [57], [58], [59] and pixel-shuffle’s excessive
memory demands, these layers cannot be directly mapped
to NPU, leading to runtime errors [59], substitution with
less performant blocks [14] or expensive fallback to CPU-
based execution. This may be primarily attributed to the 6-
dimensional intermediate data of the pixel-shuffle operation,
which, if not manipulated efficiently, significantly affect the
memory footprint. It is often the case that the NPU executor
attempts to partition the tensor by storing each dimension on
a separate memory bank, to provide the processing units with
parallel access to all dimensions [59]. Hence, in cases where
the tensor dimensions exceed the number of NPU memory
banks or the depth of the banks is severely underutilized,
the NPU can run out of memory.

To address this problem, we introduce a data layout
transformation that caps and minimizes the footprint of

pixel-shuffle-based upsampling. Our approach restructures
the input and activation tensors so that a maximum of four
dimensions are used throughout the pixel-shuffling process.

The original pixel-shuffle operation with an upscale factor
of s on a tensor x ∈ R1×cin×h×w with cin channels, height h
and width w involves the following steps:
1) Reshape 4D tensor x into a 6D tensor of shape: 1×cout×s×s×h×w
2) Permute dimensions as: 1× cout × h× s× w × s
3) Reshape 6D tensor into final 4D tensor of shape: 1×cout×s ·h×s ·w
This implementation leads to underutilization of the NPU
memory. Instead, we perform the following steps:
1) Reshape 4D tensor into a 2D tensor of shape: cout × s · s · h · w
2) Extract each of the cout channels in parallel, producing cout 1D tensors

of size: s · s · h · w
3) Reshape each of the cout 1D tensors to a 4D tensor of shape: s× s×

h× w
4) Permute each of the cout 4D tensors as h× s× w × s
5) Reshape each of the cout 4D tensors to 2D tensor of shape: s ·h×s ·w
6) Stack cout 2D tensors to form a single 3D tensor of shape: cout × s ·

h× s · w
In this manner, we never exceed 4D tensors and the memory
of the NPU is more fully utilized, enabling the mapping of
upsampling layers on the NPU. This technique was crucial
in order to enable the full NPU-based execution of SR DNNs
and avoid the costly CPU fallback of current deployments.

5 EVALUATION

Experimental Setup. We target the Qualcomm Snapdragon
865 SoC (SDM865) of a Samsung Galaxy S20. SDM865
comprises an octa-core Kryo 585 CPU, an Adreno 650 GPU
and the Hexagon 698 NPU. The NPU integrates a vector
processor (HVX) supporting INT8 and a tensor accelerator
(HTA) supporting both INT8 and A16W8. We consider
W = {8, 16} as our activations wordlengths and map
INT8 to HVX and A16W8 to HTA. We implemented the
NAWQ-SR’s offline components using PyTorch (v1.6) and the
runtime components by leveraging the Snapdragon Neural
Processing Engine (SNPE v1.47) SDK. To showcase the
generality of our system, we further target the Snapdragon
888 SoC (SDM888) and present comparisons against highly
optimized baselines in terms of processing speed (§ 5.3) and
energy efficiency (§ 5.5). SDM888 is hosted on a Snapdragon
888 Mobile Hardware Development Kit (HDK) and consists
of an octa-core Kryo 685 CPU, an Adreno 660 GPU and
the Hexagon 780 NPU. The NPU comprises scalar, vector
and tensor processing units, which are composable and
support both INT8 and A16W8. Unless mentioned otherwise,
SDM865 is used for measurements.

SR Models. We target three state-of-the-art models of
varying depth, architecture and workload: the lightweight
TPSR [31], the mid-range IMDN [30], and MobiSR-
RCAN [11], an efficient RCAN [22] variant.

Training Details For TPSR and IMDN, we utilize the
pre-trained models as provided by the respective authors.
For MobiSR-RCAN, we follow the training scheme by Lee et
al. [11] and reproduce the reported results. Following the
common practice of both the SR [18], [22], [23], [30], [46],
[60] and mobile [11], [15], [34], [61] communities, all models
were trained on DIV2K [62], consisting of 800 diverse-content
images of 2K resolution. Unless otherwise mentioned, we use
an upscaling factor of ×4 to compare with previous works.

Performance Metrics. We report both visual quality and
latency as evaluation metrics. In order to compare with
other works, we use the standard SR reconstruction quality

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, MARCH 2023 8

TABLE 1: QuantSR-WLopt vs. Heuristic Optimizers

Model Layers Dataset Target PSNR Search BOPs Reduction
Drop Time WLopt SA GA

TPSR 33 B100 0.1 dB 2.1 min 1.96× 1.68× 1.59×
TPSR 33 Urban100 0.1 dB 9.6 min 1.83× 1.37× 1.69×
IMDN 85 B100 0.1 dB 9.4 min 1.93× 1.66× 1.44×
IMDN 85 Urban100 0.1 dB 22 min 1.93× 1.67× 1.57×
MobiSR-RCAN 255 B100 0.1 dB 72 min 2.00× 1.72× 1.56×
MobiSR-RCAN 255 Urban100 0.1 dB 177 min 2.00× 1.49× 1.50×

*SA setup: init. temperature t0=1, cooling schedule at iter i: ti=t0e
−0.05i

GA setup: population size=⌈0.25 · #Layers⌉

metrics: PSNR and structural similarity (SSIM) [63]. We also
note that a gain in these quality metrics do not necessarily
translate to more visually pleasing images [64] and would
like to emphasize that seemingly minimal gains of 0.1 dB
can help counteract undesirable artifacts which occur due to
quantization. As such, we present qualitative results in Fig. 1.
For processing speed, we report the average latency across
50 runs, with the latency measurements obtained through
SNPE’s timing utilities. Unless mentioned otherwise, we
assume a target high-resolution of 720p.

Datasets. The evaluation was conducted on the standard
SR benchmarks used across a large body of recent mobile
SR works [11], [15], [18], [34], namely Set5 [65], Set14 [66],
B100 [67], and Urban100 [19]. Set5 and Set14 are smaller
datasets with 5 and 14 images, respectively, each with
different SR challenges. B100 and Urban100, with 100 images
each, represent a wider range of natural and urban scenes
which might be more representative of SR tasks in the wild.
For each benchmark dataset, we use 10% as our calibration
set, sampled randomly with uniform probability. Note that
while our calibration set selection performs quite well, further
exploration of the optimal calibration set size for each model
and dataset can be performed [40].

NAWQ-SR Parameters NAWQ-SR exposes two param-
eters used for the exploration of the per-layer wordlengths
and for the DRE layer selection – the quality drop tolerance
(ϵ) and the energy concentration threshold (K), respectively.
Unless mentioned otherwise, we use a tolerance ϵ of 0.1. For
the model-dataset pairs where weights quantization (FP32W8
in Table 2) leads to ≥ 0.1 dB PSNR drop with respect to the
original model (FP32), the tolerance ϵ is considered with
respect to FP32W8 (bold values in the table).2 For the energy
concentration threshold, we tune the value of K via grid
search for each model-dataset pair. As such, K was set to
0.125, 0.5 and 1.0, for IMDN, TPSR and MobiSR-RCAN,
respectively.

5.1 Evaluation of Wordlength Optimizer
We compare QuantSR-WLopt with three heuristic optimiz-
ers: 1) simulated annealing (SA) [68], 2) genetic algorithm
(GA) [69] and 3) random search (RS). We compare the
achieved BOPs reduction with respect to A16W8 given a
PSNR drop constraint of 0.1 dB under the same search time
budget, across the evaluated SR DNNs and datasets B100
and Urban100. We utilize the runtime of QuantSR-WLopt
as the search time budget and run each of the baselines 10
times on an Nvidia GTX1080Ti GPU, reporting the average
best result in Table 1. First, as the attainable BOPs reduction
over A16W8 is bounded to a maximum of 2×, corresponding
to INT8, we observe that our achieved reductions are very

2. FP32W8’s drop can be reduced further via more sophisticated
weight-quantization methods and thus is orthogonal to this work.

TABLE 2: Quality Comparison with Baselines (×4 Upscaling)

Model Average PSNR/SSIM
Variant Set5 Set14 B100 Urban100

TPSR - (Depth=33, Params=61K)
FP32 31.10/0.8779 27.95/0.7663 27.15/0.7214 24.97/0.7456
FP32W8 30.92/0.8737 27.85/0.7634 27.08/0.7190 24.90/0.7423
FP16 31.10/0.8779 27.95/0.7663 27.15/0.7214 24.97/0.7456
INT8 30.75/0.8669 27.74/0.7573 26.99/0.7136 24.82/0.7362
A16W8 30.91/0.8736 27.83/0.7630 27.07/0.7189 24.88/0.7417
NAWQ-SR 30.91/0.8730 27.83/0.7620 27.05/0.7170 24.88/0.7411

IMDN - (Depth=85, Params=698K)
FP32 32.21/0.8948 28.58/0.7811 27.55/0.7351 26.04/0.7837
FP32W8 32.04/0.8921 28.46/0.7795 27.47/0.7338 25.92/0.7814
FP16 32.21/0.8948 28.56/0.7809 27.52/0.7333 26.04/0.7837
INT8 31.86/0.8865 28.31/0.7749 27.35/0.7295 25.80/0.7753
A16W8 31.96/0.8913 28.38/0.7788 27.41/0.7336 25.85/0.7795
NAWQ-SR 32.01/0.8911 28.47/0.7781 27.45/0.7325 25.89/0.7787

MobiSR-RCAN - (Depth=255, Params=148K)
FP32 31.73/0.8873 28.23/0.7729 27.33/0.7283 25.34/0.7615
FP32W8 31.71/0.8865 27.82/0.7726 27.31/0.7282 25.33/0.7611
FP16 31.73/0.8873 28.23/0.7729 27.32/0.7283 25.34/0.7615
INT8 31.03/0.8793 27.76/0.7651 27.02/0.7225 24.97/0.7499
A16W8 31.10/0.8813 27.80/0.7668 27.06/0.7244 24.99/0.7517
NAWQ-SR 31.69/0.8851 28.14/0.7696 27.27/0.7255 25.24/0.7557

*Bold indicates the designs whose quality defines NAWQ-
SR’s PSNR drop constraint.

close to the peak performance, leaving little room for further
improvement. Furthermore, QuantSR-WLopt consistently
outperforms all baselines, yielding a BOPs gain between
16%-33% (21.8% geo. mean) over SA and 8%-34% (24.7% geo.
mean) over GA. Finally, RS yielded designs that violated the
PSNR constraint in the vast majority of runs and hence we
omit it from Table 1.

All three baseline optimizers are iterative and can quickly
determine the next candidate design point to evaluate. As
such, these strategies would be suitable in cases where the
objective function (BOPs and PSNR in our setting) is cheap to
evaluate. Nevertheless, as PSNR is costly to evaluate and the
design space is combinatorially large, the more structured
search approach of our QuantSR-WLopt is more effective
in yielding a hybrid-precision design that lies close to the
theoretical maximum of 2× BOPs reduction.

5.2 Evaluation of Neural Image Codec

Runtime Overheads. To evaluate the overhead of estimating
new scale factors and zero points for each of the selected DRE
layers, we measured the inference time, across 50 inferences,
for each of the models with and without DRE enabled for
these layers. Overall, across all DNNs, the average time
overhead of DRE was 4.26% (up to 6.40%) and 1.53% (up to
4.58%) for B100 and Urban100, respectively.

Another potential overhead introduced by NAWQ-SR
is the cost of switching between partitions with distinct
bitwidths (i.e. INT8 vs. A16W8). To evaluate this, we mea-
sured the switching times across 50 inferences for each of
the DNNs, using the partitions selected by NAWQ-SR. The
average partition-switching overhead over the inference time
across DNNs was 0.34% (up to 0.84%) and 1.04% (up to
2.41%), for B100 and Urban100, respectively, with an average
latency overhead of 39.25µs (up to 53µs) per partition.

Ablation Study of LRA and DRE. We conduct an ablation
study on i) our LRA-based layer selection and ii) using
DRE altogether, in order to disentangle their impact on
the achieved quality. For each model in Table 3, we show
the achieved PSNR/SSIM for the following configurations:

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, MARCH 2023 9

TABLE 3: Ablation Study on LRA-based layer selection and
using DRE altogether.

Model Average PSNR/SSIM
Variant LRA DRE Set5 Set14 B100 Urban100

TPSR - (Depth=33, Params=61K)
w/o DRE ✗ ✗ 30.89/0.8725 27.81/0.7614 27.04/0.7166 24.87/0.7407
RandDRE ✗ ✓ 30.89/0.8726 27.81/0.7615 27.05/0.7169 24.87/0.7408
NAWQ-SR ✓ ✓ 30.91/0.8730 27.83/0.7620 27.05/0.7170 24.88/0.7411

IMDN - (Depth=85, Params=698K)
w/o DRE ✗ ✗ 31.94/0.8900 28.36/0.7775 27.38/0.7317 25.83/0.7776
RandDRE ✗ ✓ 31.97/0.8903 28.38/0.7773 27.40/0.7318 25.83/0.7774
NAWQ-SR ✓ ✓ 32.01/0.8911 28.47/0.7781 27.45/0.7325 25.89/0.7787

MobiSR-RCAN - (Depth=255, Params=148K)
w/o DRE ✗ ✗ 31.07/0.8803 27.76/0.7652 27.03/0.7227 24.97/0.7499
RandDRE ✗ ✓ 31.18/0.8811 27.86/0.7663 27.09/0.7234 25.12/0.7537
NAWQ-SR ✓ ✓ 31.69/0.8851 28.14/0.7696 27.27/0.7255 25.24/0.7557

i) w/o DRE, where we use NAWQ-SR’s selected bitwidths
for each layer, but the scale factors and zero points of
each activations tensor are derived a priori based on the
maximum range encountered in the calibration set and
remain fixed during deployment; ii) RandDRE, where we use
1) NAWQ-SR’s selected bitwidths for each layer, and uniform
probability to 2) randomly select the number of DRE layers
and then 3) randomly select the layers. For RandDRE, we
report the average quality across 10 runs; and iii) NAWQ-SR,
our method that selectively applies DRE using our LRA-
based layer selection scheme.

Across all models and datasets, we observe that although
RandDRE already provides quality gains over w/o DRE,
the informed layer selection of the complete NAWQ-SR
contributes significant additional gains. Specifically, DRE
with LRA yield similar or higher quality, with gains of up to
0.02 dB (0.015 dB average) for TPSR, 0.11 dB (0.08 dB average)
for IMDN and 0.62 dB (0.38 dB average) for MobiSR-RCAN.
Notably, the gains of DRE are higher for deeper models
as these models are more affected by the accumulation of
quantization errors across layers, resulting in a larger drop
in visual quality. As DRE significantly reduces the degree
of error accumulation, it results in significant qualitative
improvements in IMDN and MobiSR-RCAN: specifically,
the mitigation of undesirable quantization artifacts on both
texture and color as shown in Fig. 1.

From a computational perspective, RandRE often picks a
suboptimal set of layers, resulting in 19.5× average higher
overhead compared to NAWQ-SR’s DRE layer selection.
Instead, our LRA-based approach offers the advantage of
determining in a single step both the number and the
DRE layers that have the highest impact on quality. As a
result, although a naive application of DRE can still yield a
performance improvement, our more selective layer selection
method achieves a better trade-off that combines both higher
quality and lower latency overhead, and is, thus, an essential
component of the proposed system.

Overall, as shown in Fig. 4 and Table 2, the Neural Image
Codec presents a very reasonable overhead considering its
latency and visual quality when compared to the full- (FP32)
and lowest-precision (INT8) baselines.

5.3 Comparison with Highly Optimized Baselines

This section presents a comparison of NAWQ-SR with the fol-
lowing: FP32-CPU, FP16-GPU, INT8-NPU and A16W8-NPU
designs, obtained through SNPE. These represent status-quo
implementations that have been highly optimized using the
SNPE compiler targeting each of the available processors. In

TABLE 4: Speedup over Highly Optimized Baselines

Model Baseline Speedup on SDM865 Speedup on SDM888
B100/Urban100 B100/Urban100

FP32-CPU 40.89×/40.80× 55.55×/55.44×
TPSR FP16-GPU 12.54×/12.51× 16.70×/16.66×

A16W8-NPU 6.08×/ 6.07× 8.08×/ 8.06×
INT8-NPU 3.65×/ 3.64× 4.61×/ 4.60×

FP32-CPU 9.97×/ 9.91× 13.69×/13.62×
IMDN FP16-GPU 1.88×/ 1.87× 2.46×/ 2.44×

A16W8-NPU 1.89×/ 1.88× 1.83×/ 1.82×
INT8-NPU 1.59×/ 1.58× 1.52×/ 1.51×

FP32-CPU 26.11×/26.47× 34.59×/35.02×
MOBISR-RCAN FP16-GPU 7.04×/ 7.14× 9.33×/9.45×

A16W8-NPU 3.87×/ 3.92× 4.80×/ 4.86×
INT8-NPU 2.04×/ 2.07× 2.49×/ 2.52×

FP32-CPU 25.69× (22.02×) 34.65× (29.77×)
Average (geo. mean) FP16-GPU 7.16× (5.51×) 9.51× (7.27×)

A16W8-NPU 3.95× (3.55×) 4.91× (4.14×)
INT8-NPU 2.43× (2.28×) 2.87× (2.59×)

the case of INT8-NPU, we allow the layers to be executed on
both HVX and HTA to obtain the fastest execution. Table 2
presents the achieved quality and Fig. 4 and Table 4 depict
the achieved speedup measured on SDM865 and SDM888
across models and datasets. We also report the quality after
quantizing only the weights (FP32W8).

Comparison to CPU/GPU Designs. With respect to
the floating-point designs (FP32/FP16), NAWQ-SR delivers
quality within 0.1 dB of the original model’s for the vast
majority of cases. In cases where weights quantization has a
significant impact on quality, e.g. FP32W8 leads to ≥0.1 dB
drop over FP32 for Set5, Set14 and Urban100 in IMDN,
our framework was optimized with a 0.1 dB tolerance with
respect to FP32W8. This is achieved across all cases. With
respect to latency, NAWQ-SR outperforms both CPU and
GPU designs by up to 40.8× (22× geo. mean across models
and datasets) and 12.5× (5.5× geo. mean), respectively, on
SDM865 and by up to 55.5× (29.7× geo. mean) and 13.6×
(7.2× geo. mean), respectively, on SDM888.

Comparison to NPU Designs. With respect to A16W8-
NPU, NAWQ-SR outperforms its PSNR for IMDN and
MobiSR-RCAN with an average gain of 0.05 dB for IMDN
and 0.35 dB for MobiSR-RCAN across datasets. For TPSR,
NAWQ-SR generates mappings that either have slightly
lower PSNR but still lie within the PSNR constraint with
respect to FP32 (see B100), or meet the PSNR of A16W8-
NPU. On the latency front, NAWQ-SR provides up to 6×
and 8× faster execution than A16W8-NPU on SDM865 and
SDM888, respectively, with a geometric mean of 3.55× and
4.14× on the respective device across models and datasets.
Compared to INT8-NPU, NAWQ-SR yields higher PSNR
with an average of 0.09 dB for TPSR, 0.12 dB for IMDN
and 0.39 dB for MobiSR-RCAN across the datasets. With
respect to latency, our system achieves up to 3.65× and
4.61× faster processing than INT8-NPU on SDM854 and
SDM888, respectively, with a geometric mean of 2.28× and
2.59× on each device across models and datasets. NAWQ-
SR’s speedup is attributed to our highly optimized memory-
aware mapping of the pixel-shuffle upsampling layers (§ 4.3)
which enables the uninterrupted execution of the SR DNNs
on the NPU, without falling back to CPU or GPU.

Overall, the results demonstrate how the hybrid-precision
approach and the better utilization of the NPU’s capabilities
provided by our system allow us to closely track the quality
of floating-point execution, outperform current INT8 designs,
while pushing beyond A16W8’s quality in several cases.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, MARCH 2023 10

10

20

30

40 Speedup over
FP32-CPU
FP16-GPU

A16W8-NPU
INT8-NPU

TPSR IMDN MOBISR-RCAN
0

1

2

3

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

NA
W

Q-
SR

 In
fe

re
nc

e
Sp

ee
du

p
(x

)

(a) B100 on SDM865.

10

20

30

40 Speedup over
FP32-CPU
FP16-GPU

A16W8-NPU
INT8-NPU

TPSR IMDN MOBISR-RCAN
0

1

2

3

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

NA
W

Q-
SR

 In
fe

re
nc

e
Sp

ee
du

p
(x

)

(b) Urban100 on SDM865.

20

40

60
Speedup over

FP32-CPU
FP16-GPU

A16W8-NPU
INT8-NPU

TPSR IMDN MOBISR-RCAN
0

1

2

3

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

NA
W

Q-
SR

 In
fe

re
nc

e
Sp

ee
du

p
(x

)

(c) B100 on SDM888.

20

40

60
Speedup over

FP32-CPU
FP16-GPU

A16W8-NPU
INT8-NPU

TPSR IMDN MOBISR-RCAN
0

1

2

3

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

NA
W

Q-
SR

 In
fe

re
nc

e
Sp

ee
du

p
(x

)

(d) Urban100 on SDM888.

Fig. 4: NAWQ-SR’s inference speedup over highly optimized
baselines across SR DNNs, targeting SDM865 and SDM888.

5.4 Comparison with the state-of-the-art
On-Device SR Systems

Here, we show the performance gains of NAWQ-SR as a
standalone framework over the state-of-the-art on-device
SR systems, MobiSR [11] and SplitSR [34], and the winning
model of the 2021 MAI challenge [70] on quantized SR on
mobile NPUs, XLSR [18] (Table 5). MobiSR, SplitSR and
XLSR constitute the state-of-the-art image SR systems using
heterogeneous processors, CPU, and NPU, respectively. For
fair comparisons, we reimplemented and ran MobiSR on the
same device (SDM865). Both systems base their design on
lightweight variants of RCAN [22].

Comparison with MobiSR. MobiSR employs two models
that are parallelized across the heterogeneous processors of
the target device. The computationally heavier model is run
on the CPU and GPU and the lightweight one on the NPU.
MobiSR’s scheduler divides the input image into patches
and feeds them to each model-processor pair based on their
difficulty; more difficult-to-upscale patches are sent for rapid
processing to the NPU and easier patches are directed to the
CPU and GPU in a load-balancing manner. Lee et al. [11]
present three system configurations, each optimized for a
different objective:
• MobiSR-accuracy: The accuracy-optimized model pair,

denoted by (mref +mclc) in [11]. mref denotes the original
MobiSR-RCAN architecture. mclc employs group convo-
lutions and channel-shuffle layers [71], [72] to reduce the
computational complexity of the original MobiSR-RCAN.

• MobiSR-balanced: The accuracy-latency balanced model
pair, denoted by (mref +ms2) in [11]. The compact model
ms2 goes beyond the channel shuffling of mclc and in-
troduces channel splitting [73] and depthwise-separable
convolutions [74] to further improve latency.

• MobiSR-latency: The latency-optimized model pair, de-
noted by (mclc +ms2) in [11]. This model pair combines
the complexity-reduction techniques of the high-accuracy
and balanced model pairs, delivering fast processing at the
expense of degraded visual quality.

Furthermore, MobiSR introduces a parameter named total-
variation (TV) threshold that tunes the accuracy-latency
trade-off of each pair of models. To perform a fair comparison,
we tune the TV threshold of each MobiSR variant, so that

TABLE 5: Comparison with Existing On-Device SR Systems

System Model Memory Average PSNR/SSIM
(KB) Set5 Set14 B100 Urban100

Original MobiSR-RCAN 594 31.73/0.8873 28.23/0.7729 27.33/0.7283 25.34/0.7615
MobiSR (accuracy) 623 31.37/0.8787 28.10/0.7707 27.28/0.7258 25.28/0.7591
MobiSR (balanced) 610 30.89/0.8590 27.98/0.7650 27.23/0.7207 25.31/0.7598
MobiSR (latency) 134 31.05/0.8762 27.87/0.7640 27.11/0.7208 24.85/0.7415
NAWQ-SR MobiSR-RCAN 148 31.69/0.8851 28.14/0.7696 27.28/0.7261 25.25/0.7558

SplitSR (accuracy) 679 31.76/0.8982 28.29/0.7916 27.39/0.7491 25.46/0.7795
NAWQ-SR IMDN 698 32.01/0.8911 28.47/0.7781 27.45/0.7325 25.89/0.7787

SplitSR (latency) 367 31.53/0.8950 28.18/0.7887 27.28/0.7458 25.20/0.7704
NAWQ-SR MobiSR-RCAN 148 31.69/0.8851 28.14/0.7696 27.28/0.7261 25.25/0.7558

System Model Upscale Precision Memory Average PSNR/SSIM Speedup
Factor (KB) B100 Urban100 over CPU over XLSR

XLSR - ×3 FP32 268 28.55/- 26.71/- 1.00× 1.00×
XLSR - ×3 INT8 67 28.05-28.35/- 26.21-26.51/- 28.50× 1.00×
NAWQ-SR TPSR ×3 hybrid 61 28.56/0.7861 26.78/0.8126 54.41× 1.91×

it meets 0.1 dB PSNR drop with respect to the original
MobiSR-RCAN. As such, we set TV to ⟨8, 8, 6, 6⟩ for Set5,
Set14, B100 and Urban100 for MobiSR-accuracy, ⟨8, 8, 6, 8⟩
for MobiSR-balanced and to 10 for all datasets for MobiSR-
latency. Accordingly, we apply NAWQ-SR over MobiSR-
RCAN with the same PSNR drop tolerance.

Fig. 5 depicts the actual speedup achieved by MobiSR
and NAWQ-SR over highly optimized CPU and GPU imple-
mentations on Urban100. On B100, NAWQ-SR outperforms
MobiSR yielding up to 13.4× and 5.9× higher speedup
over the CPU and GPU mapping, respectively. Similarly,
on Urban100, NAWQ-SR achieves up to 11.1× and 4.9×
higher speedup over MobiSR compared to the CPU and
GPU implementations, respectively. Due to its approach
of quantizing the compact DNN that runs on the NPU,
MobiSR has to compensate for the PSNR drop by scheduling
a significant portion of patches to the expensive CPU- and
GPU-pinned model. Instead, through the combination of
hybrid-precision execution and DRE, NAWQ-SR alleviates
the destructive effect of quantization on quality and enables
the fast processing of all patches on the NPU. Overall,
NAWQ-SR achieves an average speedup improvement of
7.93× (7.17× geo. mean) across models and datasets.

Comparison with SplitSR. SplitSR introduces a compact
residual block (SplitSRBlock) and modifies RCAN to allow
for a configurable accuracy-computational cost trade-off,
using a single model. Two system configurations were
presented in [34], optimized for different targets:
• SplitSR-accuracy: The accuracy-optimized model, com-

posed of 7 residual groups, each with 7 residual blocks.
• SplitSR-latency: The latency-optimized model, composed

of 5 residual groups, each with 6 residual blocks.
Moreover, SplitSR is optimized for mobile CPU execution

through the TVM compiler [75]. To compare against SplitSR,
we impose a PSNR constraint within 0.05 dB of the PSNR
achieved by each SplitSR variant and select the NAWQ-SR
model that satisfies it for each dataset. As such, we select
IMDN and MobiSR-RCAN to compare with SplitSR-accuracy
and -latency, respectively (Table 5).

Fig. 6 shows the measured latency of SplitSR and NAWQ-
SR on Urban100 and B100. On the accuracy-driven designs,
NAWQ-SR improves latency by 1.59× and 1.60× on Ur-
ban100 and B100, respectively. On latency-driven designs,
NAWQ-SR demonstrates a performance gain of 4.40× and
4.37× over SplitSR on Urban100 and B100, respectively. As a
result, although SplitSR effectively combines a lightweight
model design together with compiler optimizations to
achieve significant speedup, it still relies on CPU execution,

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, MARCH 2023 11

10

20

30

MobiSR
Accuracy

MobiSR
Balanced

MobiSR
Latency

NAWQ-SR
0

1

2

3

Speedup over
FP32-CPU FP16-GPU

In
fe

re
nc

e
sp

ee
du

p
(x

)

(a) Comparison on B100.

10

20

30

MobiSR
Accuracy

MobiSR
Balanced

MobiSR
Latency

NAWQ-SR
0

1

2

3

Speedup over
FP32-CPU FP16-GPU

In
fe

re
nc

e
sp

ee
du

p
(x

)

(b) Comparison on Urban100.

Fig. 5: Speedup comparison against MobiSR.

600
700
800
900

1000

Accuracy Latency
0

50

100

150

Framework
SplitSR NAWQ-SR

La
te

nc
y

(m
s)

(a) Comparison on B100.

600
700
800
900

1000

Accuracy Latency
0

50

100

150

Framework
SplitSR NAWQ-SR

La
te

nc
y

(m
s)

(b) Comparison on Urban100.

Fig. 6: Latency comparison against SplitSR.

remaining bounded by the performance of floating-point
processors. On the other hand, NAWQ-SR’s hybrid precision
and optimized utilization of the NPU’s processing units
avoids the inefficiencies of floating-point execution and
reaches higher raw performance over the highly optimized
CPU-based SplitSR.

Comparison with XLSR. For fairness, we target the
similarly sized TPSR with the same upscaling factor (×3)
as XLSR (Table 5-bottom). NAWQ-SR outperforms the INT8
XLSR with 91% higher speedup. This can be attributed
to the fact that XLSR changes the number of channels of
the convolutional layers quite frequently along the DNN
model as a way of balancing computational cost and model
capacity. Despite the theoretical reduction in FLOP count, this
has been shown to lead to increased cache-miss rates [73]
and in turn to increased latency on existing NPUs. Instead,
NAWQ-SR allows existing models to run without archi-
tectural modifications by providing latency gains through
its hybrid-precision execution. As such, it does not require
from DNNs to frequently change the number of channels
across convolutional layers, leading to more efficient NPU
execution.

With respect to quality, XLSR reports a drop between
0.2-0.5 dB when quantizing to INT8 [18]. NAWQ-SR achieves
significant PSNR gains of 0.21-0.51 dB and 0.27-0.57 dB over
the INT8 XLSR on B100 and Urban100, respectively, while
yielding same or higher PSNR levels over the FP32 XLSR.
This can be attributed to the fact that XLSR replaces pixel-
shuffle blocks with transpose convolutions in order to avoid
the lack of support for pixel-shuffling on NPUs. In turn, this
leads to checkerboard artifacts and hence deteriorates the
achieved visual quality [76]. On the other hand, NAWQ-
SR’s memory-aware mapping for efficiently executing pixel-
shuffle blocks on the NPU (§ 4.3) leads to both lower latency
and higher visual quality, setting a new state-of-the-art in
latency-quality for NPU-based SR.

5.5 Energy Consumption
To evaluate NAWQ-SR’s energy efficiency, we processed 50
images using TPSR and MobiSR-RCAN. The images are pre-
hosted, representing the scenario where a user would have
a downloaded content, which is then enhanced with on-
device SR. Energy was measured with the Monsoon power
monitor [77] at a sampling period of 200 µs.

Fig. 7c shows the average energy consumption for the
two models when upscaling to 720p images on SDM865 and
SDM888. In this case, we subtract the average idle energy
when the screen is on. We observe that NAWQ-SR results
in significant energy savings compared to the FP32 CPU
execution, with an average 6.1× and 10.3× reduction per
model on SDM865 and 8.5× and 14.2× on SDM888. This
result motivates the adoption of NPU-optimized frameworks
in comparison to state-of-the-art CPU-centric on-device SR
approaches, such as SplitSR. Moreover, we see a significant
3.5×-4.3× and 2.1×-2.4× energy reduction, even when
compared to the more efficient FP16 GPU and A16W8 NPU,
respectively, with similar gains observed for SDM888.

Fig. 7d estimates the battery life when a user continuously
watches SR-enhanced video at 1080p on a device with
4000mAh, a common battery capacity for recent mobile
devices (e.g. Samsung S20). In this case, we measure the total
energy, including the screen consumption. NAWQ-SR greatly
prolongs the battery life, with up to 3.8×, 2.3× and 1.9× bat-
tery life extension when compared to CPU, GPU and A16W8
NPU execution, respectively. When targeting SDM888, we
observe similar gains, with a slight improvement due to the
larger hardware improvement of SDM888’s NPU perfomance
over the CPU. This result highlights the potential for existing
state-of-the-art end-to-end on-device SR systems, such as
NEMO, which are bounded to GPU-based execution due to
visual quality constraints, to integrate NAWQ-SR as a means
of improving not only latency and visual quality, but also
extending battery life.

6 DISCUSSION

NAWQ-SR and existing mixed-precision schemes. Recently,
the ML community has studied a range of mixed-precision
quantization schemes that, similarly to NAWQ-SR, assign a
different bitwidth to each layer. Focusing on the strategy of
selecting the layerwise bitwidth and following the taxonomy
of Huang et al. [78], we discuss i) search-based, ii) metric-
based, and iii) optimization-based methods.

Search-based methods typically rely on neural architec-
ture search (NAS) or reinforcement learning (RL) algorithms
in order to yield the layerwise bitwidths. As noted in § 2 with
the example of HAQ [43], this family of techniques intro-
duces a significant computational overhead and requires re-
training, making it unsuitable for post-training deployment
of pre-trained SR models.

Metric-based methods assign bitwidths by estimating
the layerwise resilience to low precision with metrics that
are relatively cheap to calculate, such as the Hessian-based
metric adopted by HAWQ [44], [79]. Despite the reduced
computational burden, existing metric-based methods still
require either quantization-aware training or a re-training
stage and hence cannot be applied post-training to existing
models. Finally, the optimization-based methods aim to

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, MARCH 2023 12

TPSR MOBISR-RCAN
0.0

0.2

0.4

0.6

0.8

1.0

1.2

En
er

gy
 (J

)

6.1x

4.3x

2.1x

10.3x

3.5x
2.4x

INT8
FP32-CPU
FP16-GPU
NPU-A16W8
NAWQ-SR

(a) Energy usage on SDM865.

TPSR MOBISR-RCAN
0

2

4

6

8

10

12

Ba
tte

ry
 li

fe
 (h

)

2.5x
2.3x

1.9x

3.8x
1.9x

1.8x

FP32-CPU
FP16-GPU

NPU-A16W8
NAWQ-SR

(b) Battery life on SDM865.

TPSR MOBISR-RCAN
0.0

0.2

0.4

0.6

0.8

En
er

gy
 (J

)

8.5x

5.2x

2.2x

14.2x

4.2x

1.89x

INT8
FP32-CPU
FP16-GPU
NPU-A16W8
NAWQ-SR

(c) Energy usage on SDM888.

TPSR MOBISR-RCAN
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
Ba

tte
ry

 li
fe

 (h
)

3.4x

2.8x

2.1x

5.3x

2.2x

1.9x

FP32-CPU
FP16-GPU

NPU-A16W8
NAWQ-SR

(d) Battery life on SDM888.

Fig. 7: Energy consumption and battery life comparison for
720p and 1080p content, respectively.

turn the wordlength selection to a differentiable optimiza-
tion problem [78], [80]. This line of work can lead to a
more stable quantization-aware training process when using
mixed-precision. However, these methods have been tailored
only for cases where quantization-aware training can be
performed.

Despite the various merits of these methods, their ef-
fectiveness relies on training-time techniques or requires a
re-training step. For both of these to be feasible, availability of
the training set is required. With privacy concerns increasing
by both users and service providers, this assumption is often
not valid, as in the case of strict privacy regulations for
sharing user data [81], privacy-centric initiatives by service
providers [82] or confidentiality clauses over proprietary
datasets collected by industrial companies.

In this context, NAWQ-SR introduces a wordlength
selection method that requires a minimal calibration set
and enables the use of hybrid precision in cases where the
training set is not available. As such, our work offers the
computational efficiency of metric-based techniques, but can
also be applied directly on pre-trained models post-training.

Applicability to other mobile NPUs. In this work, we
primarily targeted the NPU of Qualcomm’s SDM865 SoC
as a representative mobile NPU with available software
tools. SDM865 has a vendor-specific hardware architecture,
comprising two distinct units, HVX and HTA (see § 5),
that support INT8 and both INT8 and A16W8 execution,
respectively. As such, if NAWQ-SR was relying on the
existence of two distinct units to obtain its performance,
it would have narrow applicability to dual-unit NPUs.

On the contrary, NAWQ-SR does not require the existence
of two distinct units. NAWQ-SR’s processing flow and neural
image codec is designed for NPU hardware architectures
with either one and two processing units. In our evaluation,
we demonstrate this generality of our framework by tar-
geting also the NPU of SDM888, which comprises a single
composable processing unit. In a similar fashion, a broad

range of existing mobile NPUs, such as the Samsung Exynos
NPU [51], MediaTek APU [50] and Arm Ethos [58], consist
of a single processing unit that can be configured with either
INT8 or A16W8 at run time. Hence, by not introducing
any optimizations that are coupled to two processing units
executing with different wordlength, NAWQ-SR constitutes
an on-device SR framework that is generalizable across
mobile NPUs from different vendors.

Despite the general underlying principles of our frame-
work, mobile NPUs are often characterized by heterogeneity
in terms of both hardware and software [37], [83]. As
such, it is difficult to deploy our method out of the box
without any further engineering step; to obtain the gains
demonstrated by NAWQ-SR, its runtime components may
have to be adapted and optimized based on the available API
of the target NPU. Nonetheless, with interoperability across
diverse mobile SoCs being an active area of research [84], it
constitutes an important, yet orthogonal, consideration when
attempting to deploy our framework on new NPU-equipped
SoC architectures.

7 CONCLUSION

NAWQ-SR introduces both algorithmic and system optimiza-
tion techniques on mobile NPUs in order to mitigate the qual-
ity drawbacks of executing SR DNNs on low-precision units.
Our experiments show that our proposed hybrid-precision
method can scale to SR models of varying computational
complexity and the run-time precision adaptation method of
NAWQ-SR’s neural image codec can be efficiently deployed
in existing commercial NPUs.

As a stand-alone framework, NAWQ-SR surpasses the
performance of existing on-device SR systems, overcoming
their limitations and significantly mitigating the quality
drawbacks of executing SR DNNs on low-precision units.
Additionally, NAWQ-SR can be orthogonally combined
with existing frameworks to obtain further gains, by either
enabling them to target NPUs, e.g. for the CPU-based SplitSR
and GPU-based NEMO, or with better utilization of the NPU
resources, e.g. for MobiSR’s NPU-mapped compact model.

REFERENCES

[1] Cisco, “Cisco Visual Networking Index (VNI) Complete
Forecast Update, 2017 - 2022,” Cisco Systems, Inc, Tech. Rep.,
2020, [Retrieved: March 5, 2023]. [Online]. Available: https:
//www.cisco.com/c/dam/m/en us/network-intelligence/
service-provider/digital-transformation/knowledge-network-
webinars/pdfs/1213-business-services-ckn.pdf

[2] “US Consumers Are Flocking to TikTok,” https:
//www.emarketer.com/content/us-consumers-are-flocking-to-
tiktok, 2020, accessed: March 5, 2023.

[3] R. K. P. Mok, E. W. W. Chan, and R. K. C. Chang, “Measuring the
Quality of Experience of HTTP Video Streaming,” in 12th IFIP/IEEE
International Symposium on Integrated Network Management (IM 2011)
and Workshops, 2011, pp. 485–492.

[4] K. Piamrat, C. Viho, J. Bonnin, and A. Ksentini, “Quality of
Experience Measurements for Video Streaming over Wireless
Networks,” in 2009 Sixth International Conference on Information
Technology: New Generations (ITNG), 2009, pp. 1184–1189.

[5] G. Dimopoulos, I. Leontiadis, P. Barlet-Ros, and K. Papagiannaki,
“Measuring Video QoE from Encrypted Traffic,” in Proceedings of
the 2016 Internet Measurement Conference (IMC), 2016.

[6] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli, “A Control-Theoretic
Approach for Dynamic Adaptive Video Streaming over HTTP,” in
SIGCOMM, 2015.

https://www.cisco.com/c/dam/m/en_us/network-intelligence/service-provider/digital-transformation/knowledge-network-webinars/pdfs/1213-business-services-ckn.pdf
https://www.cisco.com/c/dam/m/en_us/network-intelligence/service-provider/digital-transformation/knowledge-network-webinars/pdfs/1213-business-services-ckn.pdf
https://www.cisco.com/c/dam/m/en_us/network-intelligence/service-provider/digital-transformation/knowledge-network-webinars/pdfs/1213-business-services-ckn.pdf
https://www.cisco.com/c/dam/m/en_us/network-intelligence/service-provider/digital-transformation/knowledge-network-webinars/pdfs/1213-business-services-ckn.pdf
https://www.emarketer.com/content/us-consumers-are-flocking-to-tiktok
https://www.emarketer.com/content/us-consumers-are-flocking-to-tiktok
https://www.emarketer.com/content/us-consumers-are-flocking-to-tiktok

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, MARCH 2023 13

[7] Y. Zhang, Z. M. Mao, and M. Zhang, “Detecting Traffic Differen-
tiation in Backbone ISPs with NetPolice,” in Proceedings of the 9th
ACM SIGCOMM Conference on Internet Measurement (IMC), 2009.

[8] C. Dong, C. C. Loy, K. He, and X. Tang, “Image Super-Resolution
Using Deep Convolutional Networks,” IEEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI), 2016.

[9] R. Lee, S. I. Venieris, and N. Lane, “Neural Enhancement in Content
Delivery Systems: The State-of-the-Art and Future Directions,”
Proceedings of the 1st Workshop on Distributed Machine Learning
(DistributedML), 2020.

[10] R. Lee, S. I. Venieris, and N. D. Lane, “Deep Neural Network-based
Enhancement for Image and Video Streaming Systems: A Survey
and Future Directions,” ACM Comput. Surv. (CSUR), 2021.

[11] R. Lee, S. I. Venieris, L. Dudziak, S. Bhattacharya, and N. Lane, “Mo-
biSR: Efficient On-Device Super-Resolution through Heterogeneous
Mobile Processors,” in The 25th Annual International Conference on
Mobile Computing and Networking (MobiCom), 2019.

[12] H. Yeo, Y. Jung, J. Kim, J. Shin, and D. Han, “Neural Adaptive
Content-aware Internet Video Delivery,” in 13th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI), 2018.

[13] P. Hu, R. Misra, and S. Katti, “Dejavu: Enhancing Videoconferenc-
ing with Prior Knowledge,” in HotMobile, 2019.

[14] H. Yeo, C. J. Chong, Y. Jung, J. Ye, and D. Han, “NEMO: Enabling
Neural-enhanced Video Streaming on Commodity Mobile Devices,”
in The 26th Annual International Conference on Mobile Computing and
Networking (MobiCom), 2020.

[15] J. Yi, S. Kim, J. Kim, and S. Choi, “Supremo: Cloud-Assisted Low-
Latency Super-Resolution in Mobile Devices,” IEEE Transactions on
Mobile Computing (TMC), 2020.

[16] S. Wang, G. Ananthanarayanan, and T. Mitra, “OPTiC: Optimizing
Collaborative CPU–GPU Computing on Mobile Devices With
Thermal Constraints,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems (TCAD), vol. 38, no. 3, pp. 393–406,
2019.

[17] S. Kang, H. Choi, S. Park, C. Park, J. Lee, U. Lee, and S.-J. Lee, “Fire
in your Hands: Understanding Thermal Behavior of Smartphones,”
in The 25th Annual International Conference on Mobile Computing and
Networking (MobiCom), 2019.

[18] M. Ayazoglu, “Extremely Lightweight Quantization Robust Real-
Time Single-Image Super Resolution for Mobile Devices,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), 2021, pp. 2472–2479.

[19] J. Huang, A. Singh, and N. Ahuja, “Single image super-resolution
from transformed self-exemplars,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2015.

[20] “QLED 8K: Where AI Upscaling meets Deep Learning,”
https://news.samsung.com/global/the-future-of-viewing-1-
qled-8k-where-ai-upscaling-meets-deep-learning, 2021, accessed:
March 5, 2023.

[21] Nvidia, “Dynamic Super-Resolution Improves Your Games with
4K-Quality Graphics on HD Monitors,” https://www.nvidia.com/
en-us/geforce/news/dynamic-super-resolution-instantly-
improves-your-games-with-4k-quality-graphics/, 2021, accessed:
March 5, 2023.

[22] Y. Zhang, K. Li, K. Li, L. Wang, B. Zhong, and Y. Fu, “Image
Super-Resolution Using Very Deep Residual Channel Attention
Networks,” in European Conference on Computer Vision (ECCV), 2018.

[23] Z. Hui, X. Wang, and X. Gao, “Fast and Accurate Single Im-
age Super-Resolution via Information Distillation Network,” in
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2018.

[24] J. Yoo, N. Ahn, and K.-A. Sohn, “Rethinking Data Augmentation
for Image Super-resolution: A Comprehensive Analysis and a New
Strategy,” 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2020.

[25] K. Zhang, L. Gool, and R. Timofte, “Deep Unfolding Network for
Image Super-Resolution,” IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2020.

[26] Z. Luo, Y. Huang, S. Li, L. Wang, and T. Tan, “Unfolding the
Alternating Optimization for Blind Super Resolution,” in Advances
in Neural Information Processing Systems (NeurIPS), 2020.

[27] W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken, R. Bishop,
D. Rueckert, and Z. Wang, “Real-Time Single Image and Video
Super-Resolution Using an Efficient Sub-Pixel Convolutional Neu-
ral Network,” 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 1874–1883, 2016.

[28] T. Vu, C. Van Nguyen, T. X. Pham, T. M. Luu, and C. D. Yoo,
“Fast and Efficient Image Quality Enhancement via Desubpixel
Convolutional Neural Networks,” in The European Conference on
Computer Vision (ECCV) Workshops, 2018.

[29] N. Ahn, B. Kang, and K.-A. Sohn, “Fast, Accurate, and Lightweight
Super-Resolution with Cascading Residual Network,” in European
Conference on Computer Vision (ECCV), 2018.

[30] Z. Hui, X. Gao, Y. Yang, and X. Wang, “Lightweight Image
Super-Resolution with Information Multi-distillation Network,”
Proceedings of the 27th ACM International Conference on Multimedia
(MM), 2019.

[31] R. Lee, L. Dudziak, M. Abdelfattah, S. I. Venieris, H. Kim, H. Wen,
and N. Lane, “Journey Towards Tiny Perceptual Super-Resolution,”
in European Conference on Computer Vision (ECCV), 2020.

[32] X. Chu, B. Zhang, H. Ma, R. Xu, J. Li, and Q. Li, “Fast, Accurate and
Lightweight Super-Resolution with Neural Architecture Search,”
in International Conference on Pattern Recognition (ICPR), 2021.

[33] D. Song, C. Xu, X. Jia, Y. Chen, C. Xu, and Y. Wang, “Efficient
Residual Dense Block Search for Image Super-Resolution,” in Thirty-
Fourth AAAI Conference on Artifical Intelligence (AAAI), 2020.

[34] X. Liu, Y. Li, J. Fromm, Y. Wang, Z. Jiang, A. Mariakakis, and
S. Patel, “SplitSR: An End-to-End Approach to Super-Resolution
on Mobile Devices,” Proc. ACM Interact. Mob. Wearable Ubiquitous
Technol. (IMWUT), 2021.

[35] M. Almeida, S. Laskaridis, I. Leontiadis, S. I. Venieris, and N. D.
Lane, “EmBench: Quantifying Performance Variations of Deep
Neural Networks Across Modern Commodity Devices,” in The
3rd International Workshop on Deep Learning for Mobile Systems and
Applications (EMDL), 2019.

[36] M. Almeida, S. Laskaridis, A. Mehrotra, L. Dudziak, I. Leontiadis,
and N. D. Lane, “Smart at what cost? Characterising Mobile
Deep Neural Networks in the wild,” in ACM Internet Measurement
Conference (IMC), 2021.

[37] A. Ignatov et al., “AI Benchmark: All About Deep Learning on
Smartphones in 2019,” in IEEE/CVF International Conference on
Computer Vision Workshops (ICCVW), 2019.

[38] Qualcomm, “Snapdragon Neural Processing Engine,”
https://developer.qualcomm.com/docs/snpe/snapdragon
npe runtime.html, 2021, accessed: March 5, 2023.

[39] K. Guo, L. Sui, J. Qiu, J. Yu, J. Wang, S. Yao, S. Han, Y. Wang,
and H. Yang, “Angel-Eye: A Complete Design Flow for Mapping
CNN Onto Embedded FPGA,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (TCAD), vol. 37, no. 1, pp.
35–47, 2018.

[40] I. Hubara, Y. Nahshan, Y. Hanani, R. Banner, and D. Soudry,
“Accurate Post Training Quantization with Small Calibration Sets,”
in International Conference on Machine Learning (ICML), 2021.

[41] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard,
H. Adam, and D. Kalenichenko, “Quantization and Training of
Neural Networks for Efficient Integer-Arithmetic-Only Inference,”
in IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2018, pp. 2704–2713.

[42] C. Louizos, M. Reisser, T. Blankevoort, E. Gavves, and M. Welling,
“Relaxed Quantization for Discretized Neural Networks,” in Inter-
national Conference on Learning Representations (ICLR), 2019.

[43] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “HAQ: Hardware-Aware
Automated Quantization with Mixed Precision,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2019, pp. 8612–8620.

[44] Z. Dong, Z. Yao, Y. Cai, D. Arfeen, A. Gholami, M. W. Mahoney,
and K. Keutzer, “HAWQ-v2: Hessian Aware Trace-Weighted Quan-
tization of Neural Networks,” in Advances in Neural Information
Processing Systems (NeurIPS), 2020.

[45] H. Li, C. Yan, S. Lin, X. Zheng, B. Zhang, F. Yang, and R. Ji, “PAMS:
Quantized Super-Resolution via Parameterized Max Scale,” in
ECCV, 2020.

[46] B. Lim, S. Son, H. Kim, S. Nah, and K. M. Lee, “Enhanced
Deep Residual Networks for Single Image Super-Resolution,” in
IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), 2017.

[47] Y. Ma, H. Xiong, Z. Hu, and L. Ma, “Efficient Super Resolution Us-
ing Binarized Neural Network,” IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), 2019.

[48] J. Xin, N. Wang, X. Jiang, J. Li, H. Huang, and X. Gao, “Binarized
Neural Network for Single Image Super Resolution,” in European
Conference on Computer Vision (ECCV), 2020.

https://news.samsung.com/global/the-future-of-viewing-1-qled-8k-where-ai-upscaling-meets-deep-learning
https://news.samsung.com/global/the-future-of-viewing-1-qled-8k-where-ai-upscaling-meets-deep-learning
https://www.nvidia.com/en-us/geforce/news/dynamic-super-resolution-instantly-improves-your-games-with-4k-quality-graphics/
https://www.nvidia.com/en-us/geforce/news/dynamic-super-resolution-instantly-improves-your-games-with-4k-quality-graphics/
https://www.nvidia.com/en-us/geforce/news/dynamic-super-resolution-instantly-improves-your-games-with-4k-quality-graphics/
https://developer.qualcomm.com/docs/snpe/snapdragon_npe_runtime.html
https://developer.qualcomm.com/docs/snpe/snapdragon_npe_runtime.html

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, MARCH 2023 14

[49] Arm, “Ethos NPU,” https://developer.arm.com/ip-products/
processors/machine-learning/arm-ethos-n, 2021, accessed: March
5, 2023.

[50] C.-H. Lin, C.-C. Cheng, Y.-M. Tsai, S.-J. Hung, Y.-T. Kuo, P. H.
Wang, P.-K. Tsung, J.-Y. Hsu, W.-C. Lai, C.-H. Liu, S.-Y. Wang, C.-H.
Kuo, C.-Y. Chang, M.-H. Lee, T.-Y. Lin, and C.-C. Chen, “7.1 A
3.4-to-13.3TOPS/W 3.6TOPS Dual-Core Deep-Learning Accelerator
for Versatile AI Applications in 7nm 5G Smartphone SoC,” in
IEEE International Solid- State Circuits Conference - (ISSCC), 2020, pp.
134–136.

[51] J.-W. Jang, S. Lee, D. Kim, H. Park, A. S. Ardestani, Y. Choi,
C. Kim, Y. Kim, H. Yu, and H. Abdel-Aziz, “Sparsity-Aware and
Re-configurable NPU Architecture for Samsung Flagship Mobile
SoC,” in International Symposium on Computer Architecture (ISCA),
2021.

[52] C. Baskin, N. Liss, E. Schwartz, E. Zheltonozhskii, R. Giryes, A. M.
Bronstein, and A. Mendelson, “UNIQ: Uniform Noise Injection
for Non-Uniform Quantization of Neural Networks,” ACM Trans.
Comput. Syst. (TOCS), vol. 37, no. 1–4, 2021.

[53] Y. Zhang, K. Li, K. Li, L. Wang, B. Zhong, and Y. Fu, “Image
Super-Resolution Using Very Deep Residual Channel Attention
Networks,” in European Conference on Computer Vision (ECCV), 2018.

[54] B. Boashash, Time-Frequency Signal Analysis and Processing: A
Comprehensive Reference. Academic Press, 2015.

[55] J. Song, Y. Cho, J. Park, J. Jang, S. Lee, J. Song, J. Lee, and I. Kang,
“7.1 An 11.5TOPS/W 1024-MAC Butterfly Structure Dual-Core
Sparsity-Aware Neural Processing Unit in 8nm Flagship Mobile
SoC,” in 2019 IEEE International Solid- State Circuits Conference -
(ISSCC), 2019.

[56] S. Wang, A. Pathania, and T. Mitra, “Neural Network Inference on
Mobile SoCs,” IEEE Design Test, vol. 37, no. 5, pp. 50–57, 2020.

[57] T. Tan and G. Cao, “FastVA: Deep Learning Video Analytics
Through Edge Processing and NPU in Mobile,” in IEEE INFOCOM
2020 - IEEE Conference on Computer Communications, 2020.

[58] Arm, “Powering the Edge: Driving Optimal Performance with
the Ethos-N77 NPU,” https://www.arm.com/-/media/files/
pdf/ethos/Arm Ethos N77 white paper final v4, 2021, accessed:
March 5, 2023.

[59] Qualcomm, “Snapdragon Neural Processing Engine Limitations,”
https://developer.qualcomm.com/docs/snpe/limitations.html,
2021, accessed: March 5, 2023.

[60] X. Wang, K. Yu, S. Wu, J. Gu, Y. Liu, C. Dong, C. C. Loy, Y. Qiao,
and X. Tang, “ESRGAN: Enhanced Super-Resolution Generative
Adversarial Networks,” in European Conference on Computer Vision
Workshops (ECCVW), 2018.

[61] J.-H. Kim, Y. Jung, H. Yeo, J. Ye, and D. Han, “Neural-Enhanced
Live Streaming: Improving Live Video Ingest via Online Learning,”
in SIGCOMM, 2020.

[62] R. Timofte, E. Agustsson, L. Van Gool, M.-H. Yang, and L. Zhang,
“NTIRE 2017 Challenge on Single Image Super-Resolution: Methods
and Results,” in IEEE Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), 2017.

[63] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,”
IEEE Transactions on Image Processing (TIP), 2004.

[64] Y. Blau and T. Michaeli, “The Perception-Distortion Tradeoff,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2018.

[65] M. Bevilacqua, A. Roumy, C. Guillemot, and M. line Alberi Morel,
“Low-Complexity Single-Image Super-Resolution based on Non-
negative Neighbor Embedding,” in British Machine Vision Conference
(BMVC), 2012.

[66] J. Yang, J. Wright, T. S. Huang, and Y. Ma, “Image Super-resolution
via Sparse Representation,” Trans. Img. Proc. (TIP), vol. 19, no. 11,
pp. 2861–2873, 2010.

[67] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of
human segmented natural images and its application to evaluating
segmentation algorithms and measuring ecological statistics,” in
IEEE International Conference on Computer Vision (ICCV), 2001.

[68] S. Kirkpatrick, C. Gelatt Jr, and M. Vecchi, “Optimization by
Simulated Annealing,” Science, vol. 220, no. 4598, pp. 671–680,
1983.

[69] C. R. Reeves, Ed., Modern Heuristic Techniques for Combinatorial
Problems. USA: John Wiley & Sons, Inc., 1993.

[70] A. Ignatov, R. Timofte, M. Denna, and A. Younes, “Real-Time
Quantized Image Super-Resolution on Mobile NPUs, Mobile AI
2021 Challenge: Report,” in Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition Workshops (CVPRW),
2021, pp. 2525–2534.

[71] X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet: An Extremely
Efficient Convolutional Neural Network for Mobile Devices,” in
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2018.

[72] D.-Q. Zhang, “clcNet: Improving the Efficiency of Convolutional
Neural Network Using Channel Local Convolutions,” IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), 2018.

[73] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “ShuffleNet V2: Practical
Guidelines for Efficient CNN Architecture Design,” in The European
Conference on Computer Vision (ECCV), 2018.

[74] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “MobileNets: Efficient
Convolutional Neural Networks for Mobile Vision Applications,”
arXiv, 2017.

[75] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Q. Yan, H. Shen,
M. Cowan, L. Wang, Y. Hu, L. Ceze, C. Guestrin, and A. Krishna-
murthy, “TVM: An Automated End-to-End Optimizing Compiler
for Deep Learning,” in 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2018.

[76] “Deconvolution and Checkerboard Artifacts,” https://distill.pub/
2016/deconv-checkerboard/, 2022, accessed: March 5, 2023.

[77] “Monsoon Official Website,” https://www.msoon.com/, 2021,
accessed: March 5, 2023.

[78] X. Huang, Z. Shen, S. Li, Z. Liu, X. Hu, J. Wicaksana, E. Xing, and
K.-T. Cheng, “SDQ: Stochastic Differentiable Quantization with
Mixed Precision,” in International Conference on Machine Learning
(ICML), 2022.

[79] Z. Dong, Z. Yao, A. Gholami, M. W. Mahoney, and K. Keutzer,
“HAWQ: Hessian Aware Quantization of Neural Networks with
Mixed-Precision,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), 2019, pp. 293–302.

[80] L. Yang and Q. Jin, “FracBits: Mixed Precision Quantization via
Fractional Bit-widths,” in Proceedings of the AAAI Conference on
Artificial Intelligence (AAAI), vol. 35, no. 12, 2021, pp. 10 612–10 620.

[81] European Commission, “GDPR: 2018 Reform of
EU Data Protection Rules.” [Online]. Avail-
able: https://ec.europa.eu/commission/sites/beta-political/files/
data-protection-factsheet-changes en.pdf

[82] Apple, “Learning with Privacy at Scale,” in Differential Privacy Team
Technical Report, 2017.

[83] C. Wu, D. Brooks, K. Chen, D. Chen, S. Choudhury, M. Dukhan,
K. Hazelwood, E. Isaac, Y. Jia, B. Jia, T. Leyvand, H. Lu, Y. Lu,
L. Qiao, B. Reagen, J. Spisak, F. Sun, A. Tulloch, P. Vajda, X. Wang,
Y. Wang, B. Wasti, Y. Wu, R. Xian, S. Yoo, and P. Zhang, “Machine
Learning at Facebook: Understanding Inference at the Edge,” in
2019 IEEE International Symposium on High Performance Computer
Architecture (HPCA), 2019, pp. 331–344.

[84] S. I. Venieris, I. Panopoulos, and I. S. Venieris, “OODIn: An Opti-
mised On-Device Inference Framework for Heterogeneous Mobile
Devices,” in IEEE International Conference on Smart Computing
(SMARTCOMP), 2021.

PLACE
PHOTO
HERE

Stylianos I. Venieris (S’16-M’22) is currently
a Senior Research Scientist at Samsung AI,
Cambridge, U.K., where he leads the Distributed
AI group. He received the Ph.D degree in Recon-
figurable Hardware and Deep Learning in 2018
and the M. Eng. degree (Hons.) in Electrical and
Electronic Engineering in 2014 from Imperial Col-
lege London, London, U.K. He has published over
20 research papers in peer-refereed journals and
international conferences. His current research
interest include methodologies for the principled

mapping of deep learning algorithms on mobile and embedded platforms,
as well as the design of custom hardware accelerators for the high-
performance, energy-efficient deployment of deep neural networks.

https://developer.arm.com/ip-products/processors/machine-learning/arm-ethos-n
https://developer.arm.com/ip-products/processors/machine-learning/arm-ethos-n
https://www.arm.com/-/media/files/pdf/ethos/Arm_Ethos_N77_white_paper_final_v4
https://www.arm.com/-/media/files/pdf/ethos/Arm_Ethos_N77_white_paper_final_v4
https://developer.qualcomm.com/docs/snpe/limitations.html
https://distill.pub/2016/deconv-checkerboard/
https://distill.pub/2016/deconv-checkerboard/
https://www.msoon.com/
https://ec.europa.eu/commission/sites/beta-political/files/data-protection-factsheet-changes_en.pdf
https://ec.europa.eu/commission/sites/beta-political/files/data-protection-factsheet-changes_en.pdf

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, MARCH 2023 15

PLACE
PHOTO
HERE

Mario Almeida is currently VP of Engineering at
Rain Instant Pay. He received the Ph.D degree
in Mobile and Network Systems in 2017 from
the Technical University of Catalonia, Barcelona,
Spain, and the Master degree in Distributed
Computing in 2014 from the KTH Royal Institute
of Technology, Stockholm, Sweden. He has pub-
lished multiple research papers in peer-refereed
journals and international conferences. His re-
search interests lie in the intersection of machine
learning and mobile systems and networks.

PLACE
PHOTO
HERE

Royson Lee is currently a Ph.D student in Com-
puter Science at the University of Cambridge,
U.K and a part-time Research Engineer at Sam-
sung AI, Cambridge, U.K. He received the MPhil
degree in Computer Science in 2018 from the
University of Cambridge and the B.Eng degree
in Computing from Imperial College London, Lon-
don, U.K. His research interests include super-
resolution, federated learning, and meta-learning.

PLACE
PHOTO
HERE

Nicholas D. Lane is a Professor in the Depart-
ment of Computer Science and Technology at
the University Cambridge, U.K., where he leads
the Machine Learning Systems lab (CaMLSys).
Alongside his academic role, he is also a Program
Director at the Samsung AI Center in Cambridge
where his teams study on-device and distributed
forms of machine learning. To find out more about
his research, please visit http://niclane.org and
https://mlsys.cst.cam.ac.uk.

	Introduction
	Background & Related Work
	Super-resolution for Mobile Devices
	Challenges and Opportunities of NPUs

	NAWQ-SR Overview
	Design of NAWQ-SR
	Multiple Wordlengths for Mobile SR
	Dynamic Range Adaptation
	Neural Image Codec

	Evaluation
	Evaluation of Wordlength Optimizer
	Evaluation of Neural Image Codec
	Comparison with Highly Optimized Baselines
	Comparison with the state-of-the-art On-Device SR Systems
	Energy Consumption

	Discussion
	Conclusion
	References
	Biographies
	Stylianos I. Venieris
	Mario Almeida
	Royson Lee
	Nicholas D. Lane

